首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1842篇
  免费   140篇
  国内免费   139篇
  2024年   2篇
  2023年   35篇
  2022年   47篇
  2021年   73篇
  2020年   65篇
  2019年   70篇
  2018年   56篇
  2017年   67篇
  2016年   86篇
  2015年   73篇
  2014年   83篇
  2013年   114篇
  2012年   74篇
  2011年   81篇
  2010年   60篇
  2009年   74篇
  2008年   82篇
  2007年   89篇
  2006年   96篇
  2005年   78篇
  2004年   73篇
  2003年   75篇
  2002年   63篇
  2001年   55篇
  2000年   48篇
  1999年   39篇
  1998年   44篇
  1997年   33篇
  1996年   39篇
  1995年   31篇
  1994年   33篇
  1993年   25篇
  1992年   20篇
  1991年   21篇
  1990年   17篇
  1989年   9篇
  1988年   7篇
  1987年   13篇
  1986年   9篇
  1985年   13篇
  1984年   10篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1967年   2篇
排序方式: 共有2121条查询结果,搜索用时 15 毫秒
31.
32.
本文论证了菲波纳斯(Fibonacci)级数与菊花花冠结构的关系,发现了花冠的通用数学模式:花冠(数目)=(5×倍数)十F_n(F_(n-1)+F_(n-2))  相似文献   
33.
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination.  相似文献   
34.
Flower development can be divided into four major steps: phase transition from vegetative to reproductive growth, formation of inflorescence meristem, formation and identity determination of floral organs, and growth and maturation of floral organs. Intercellular and intracellular signalling mechanisms must have important roles in each step of flower development, because it requires cell division, cell growth, and cell differentiation in a concerted fashion. Molecular genetic analysis of the process has started by isolation of a series of mutants with unusual flowering time, with aberrant structure in inflorescence and in flowers, and with no self-fertilization. At present more than 60 genes are identified from Arabidopsis thaliana and some of them have cloned. Although the information is still limited, several types of signalling systems are revealed. In this review, we summarize the present genetic aspects of the signalling network underlying the processes of flower development.  相似文献   
35.
36.
Blue light controls solar tracking by flowers of an alpine plant   总被引:2,自引:0,他引:2  
In at least 18 plant families, leaves or flowers can maintain a specific orientation with respect to diurnal movements of the sun. Previous work on heliotropic leaves has demonstrated that blue light (400–500nm) provides the cue for their tracking response. Floral heliotropism occurs in several families of arctic and alpine plants, but the spectral sensitivity of the response has not been studied previously. Moreover, no studies on the spectral sensitivity of any heliotropism have been conducted on wild plants growing in their natural habitat. Working under field conditions, we used coloured acrylic filters to determine whether heliotropism by flowers of the snow buttercup (Ranunculus adoneus) is responsive to broad-band blue or red light. Flowers were able to orient towards the sun under boxes made entirely of blue-transmitting filters and in red-transmitting boxes having a single blue side that faced the sun. In these treatments, solar tracking ability was not significantly different from that observed in adjacent control flowers. In contrast, the precision of solar orientation was significantly reduced in red-transmitting boxes and red boxes with a single blue side oriented away from the sun. In the early morning, flowers covered by red-transmitting boxes failed to orient in the direction of sunrise, suggesting that this floral response, unlike that seen in some heliotropic leaves, lacks a residual‘memory’ for previous solar movements.  相似文献   
37.
We are approaching corolla differentiation in Compositae by studying the regulation of flavonoid pathway genes during inflorescence development in gerbera. We have cloned a dfr cDNA from a ray floret corolla cDNA library of Gerbera hybrida var. Regina by a PCR technique based on homologies found in genes isolated from other plant species. The functionality of the clone was tested in vivo by complementing the dihydrokaempferol accumulating petunia mutant line RL01. By Southern blot analysis, G. hybrida var. Regina was shown to harbour a small family of dfr genes, one member of which was deduced to be mainly responsible for the DFR activity in corolla. Dfr expression in corolla correlates with the anthocyanin accumulation pattern: it is basipetally induced, epidermally specific and restricted to the ligular part of corolla. By comparing the dfr expression in different floret types during inflorescence development, we could see that dfr expression reflects developmental schemes of the outermost ray and trans florets, contrasted with that of the disc florets.  相似文献   
38.
This report shows that one of the most important roles of the flower nectar of an autogamous perennialRorippa indica (L.) Hieron is as an attractant for employing some ant species as a defense against herbivorous insects. The plant has flowers from spring to early winter. Its flower nectar is frequently stolen by some ant species (hereafter cited as ants) which also feed on small herbivorous insects on the plant. Internations among the tritrophic levels (R. indica, herbivores, ants) were experimentally examined and the followings became clear. (1) Ants were attracted toR. indica in search of its flower nectar. (2) The gradual secretion of flower nectar seemed to detain ants on the plant. (3)Pieris butterfly lavae were the major herbivores onR. indica and were potentially harmful to the plant. (4) The presence of ants reduced the survival rate ofP. rapae larvae onR. indica. (5) The presence of ants reduced the feeding damage toR. indica. (6) The disadvantage of nectar use by ants seemed to be minimal for the plant since the ants did not disturb the other flower visitors. These facts suggest a mutualistic relationship betweenR. indica and ants. That is, the flower nectar serves as an indirect defense against herbivorous insects.  相似文献   
39.
本文研究了长白落叶松(LarixolgensisHenry)大小孢子叶球的分化及其分布规律.获得如下结果:(1)6月下旬芽鳞形成期终止,7月初进入小孢子叶分化期,7月未至8月上旬小孢子叶分化期结束.8月上旬进入小孢子囊分化期,8月下旬出现造孢细胞,9月中旬形成小孢子母细胞.10月底小孢子母细胞保持在细线期阶段,小孢子叶球进入冬季休眠期.(2)9月初苞片原基开始形成,9月中旬珠鳞原基形成;10月上旬出现胚珠原始体,10月下旬大孢子母细胞形成,10月底大孢子叶球芽进入冬季休眠.(3)小孢子叶球芽主要分布在树冠的中、下部.数量上远远大于大孢子叶球芽的数量,约为大孢子叶球芽的19倍。大孢子叶球芽主要集中分布在树冠中部,而且树冠下部多于树冠上部。  相似文献   
40.
Abstract.
  • 1 Evolutionary pressure should select for efficient foraging strategies, within the constraints of other selective forces. We assess the mechanisms underlying flower choice in the butterfly, Pieris napi (L.), which as an adult forages for nectar. Experiments were carried out on a laboratory colony, using artificial flowers of two colours, and replicated on two successive generations.
  • 2 When nectar was freely available from all flowers, equal numbers of butterflies visited each colour, but individual butterflies exhibited flower constancy, showing a strong preference for one colour or the other.
  • 3 Following 3 day conditioning periods in which nectar was available from flowers of one colour only, butterflies responded by developing a preference for this colour, which persisted when both flower colours were refilled. This preference could subsequently be switched to the other flower colour following a further 3 days of conditioning. These are interpreted as adaptive (learned) responses, which would have obvious selective benefits in the field, enabling butterflies to avoid flower species which experience has shown are poor sources of nectar, and to adapt to temporal and spatial changes in nectar availability.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号